设函数y=f(x)(x∈R),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-1/2)≤0的解集为
问题描述:
设函数y=f(x)(x∈R),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-1/2)≤0的解集为
答
设函数y=f(x)(x∈R),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-1/2)≤0的解集为