已知圆 O:x2+y2=4,圆内有定点P(1,1),圆周上有两个动点A,B,使PA⊥PB,则AB的中点Q的轨迹方程为______.

问题描述:

已知圆 O:x2+y2=4,圆内有定点P(1,1),圆周上有两个动点A,B,使PA⊥PB,则AB的中点Q的轨迹方程为______.

设A(x1,y1),B(x2,y2),AB的中点Q(x,y),
则x1+x2=2x,y1+y2=2y,
又P(1,1),且PA⊥PB,

|AB|
2
=|PQ|,即|AB|2=4|PQ|2
(x1-y1)2+(x2-y2)2=4(x-1)2+4(y-1)2
整理得:x12+y12+x22+y22-2(x1y1+x2y2)=4(x-1)2+4(y-1)2     ①
又∵点A、B在圆上,∴x12+y12=x22+y22=4    ②
再由PA⊥PB,得
PA
PB
=0
,即(x1-1)(x2-1)+(y1-1)(y2-1)=0.
整理得:x1x2+y1y2-(x1+x2)-(y1+y2)+2=0,
∴x1x2+y1y2=2x+2y-2   ③
把②③代入①得:(x-
1
2
)2+(y-
1
2
)2=
3
2

∴AB的中点Q的轨迹方程为(x-
1
2
)2+(y-
1
2
)2=
3
2

故答案为:(x-
1
2
)2+(y-
1
2
)2=
3
2

答案解析:设出A、B和Q的坐标,由PA⊥PB,结合直角三角形斜边的中线等于斜边的一半列式,再由点A和B的坐标适合圆的方程及
PA
PB
=0
列式得到A,B的坐标和Q坐标的关系,整体代入后即可得到AB的中点Q的轨迹方程.
考试点:轨迹方程.
知识点:本题考查了轨迹方程,考查了直角三角形中边角的关系,训练了利用代入法求轨迹方程,是中档题.