设P是曲线y2=4(x-1)上的一个动点,则点P到点(0,1)的距离与点P到y轴的距离之和的最小值是 ⊙ ___ .

问题描述:

设P是曲线y2=4(x-1)上的一个动点,则点P到点(0,1)的距离与点P到y轴的距离之和的最小值是 ⊙ ___ .

y2=4(x-1)的图象是以y轴为准线,(2,0)为焦点的抛物线,∴当点P为(0,1)点与(2,0)点的连线与抛物线的交点时,距离和最小,
最小值为:

(2-0)2+(0-1)2
=
5

故答案为:
5

答案解析:先根据抛物线方程求出其准线与焦点坐标,在与抛物线的性质可得到当点P为(0,1)点与(2,0)点的连线与抛物线的交点时,距离和最小,最后根据两点间的距离公式得到答案.
考试点:抛物线的应用.
知识点:本题主要考查抛物线的基本性质和两点间的距离公式的应用.抛物线的简单性质是高考的重点,考题一般不难,但是灵活性要求比较高.