已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为_.

问题描述:

已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为______.

依题设P在抛物线准线的投影为P',抛物线的焦点为F,则 F(

1
2
,0),
依抛物线的定义知P到该抛物线准线的距离为|PP'|=|PF|,
则点P到点A(0,2)的距离与P到该抛物线准线的距离之和
d=|PF|+|PA|≥|AF|=
(
1
2
)
2
+22
17
2

故答案为:
17
2