数列112,314,518,7116,…,(2n-1)+12n,…的前n项和Sn的值为(  )A. n2+1-12nB. 2n2-n+1-12nC. n2+1-12n−1D. n2-n+1-12n

问题描述:

数列1

1
2
,3
1
4
,5
1
8
,7
1
16
,…,(2n-1)+
1
2n
,…的前n项和Sn的值为(  )
A. n2+1-
1
2n

B. 2n2-n+1-
1
2n

C. n2+1-
1
2n−1

D. n2-n+1-
1
2n

由题意可得Sn=(1+

1
2
)+(3+
1
4
)+(5+
1
8
)+…+(2n-1+
1
2n

=(1+3+5+…+2n-1)+(
1
2
+
1
4
+
1
8
+…+
1
2n

=
n(1+2n−1)
2
+
1
2
(1−
1
2n
)
1−
1
2
=n2+1−
1
2n

故选A
答案解析:把数列的每一项分为两项,重新组合可化为等差数列和等比数列的求和,代公式可得.
考试点:等差数列的前n项和.
知识点:本题考查等差数列和等比数列的求和公式,属基础题.