数列112,314,518,7116,…,(2n-1)+12n,…的前n项和Sn的值为( )A. n2+1-12nB. 2n2-n+1-12nC. n2+1-12n−1D. n2-n+1-12n
问题描述:
数列1
,31 2
,51 4
,71 8
,…,(2n-1)+1 16
,…的前n项和Sn的值为( )1 2n
A. n2+1-
1 2n
B. 2n2-n+1-
1 2n
C. n2+1-
1 2n−1
D. n2-n+1-
1 2n
答
由题意可得Sn=(1+
)+(3+1 2
)+(5+1 4
)+…+(2n-1+1 8
)1 2n
=(1+3+5+…+2n-1)+(
+1 2
+1 4
+…+1 8
)1 2n
=
+n(1+2n−1) 2
=n2+1−
(1−1 2
)1 2n 1−
1 2
1 2n
故选A
答案解析:把数列的每一项分为两项,重新组合可化为等差数列和等比数列的求和,代公式可得.
考试点:等差数列的前n项和.
知识点:本题考查等差数列和等比数列的求和公式,属基础题.