已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( )A. 2n-1B. (32)n−1C. (23)n−1D. 12n−1
问题描述:
已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn=( )
A. 2n-1
B. (
)n−13 2
C. (
)n−12 3
D.
1 2n−1
答
因为数列{an}的前n项和为Sn,a1=1,Sn=2an+1,a2=
1 2
所以Sn-1=2an,n≥2,可得an=2an+1-2an,即:
=an+1 an
,3 2
所以数列{an}从第2项起,是等比数列,所以Sn=1+
=(
(1−(1 2
)n−1)3 2 1−
3 2
)n−1,n∈N+.3 2
故选:B.
答案解析:直接利用已知条件求出a2,通过Sn=2an+1,推出数列是等比数列,然后求出Sn.
考试点:数列递推式;等差数列的通项公式;等差数列的前n项和.
知识点:本题考查数列的递推关系式的应用,前n项和的求法,考查计算能力.