已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.(1)求数列{an}的前n项和Sn;(2)设bn=2Sn2n−1,数列{bn}的前n项和为Tn,求证:2Tn-9bn-1+18>64bn(n+9)bn+1(n>1).

问题描述:

已知等差数列{an}的前n项和为Sn,公差d≠0,a1=1,且a1,a2,a7成等比数列.
(1)求数列{an}的前n项和Sn
(2)设bn=

2Sn
2n−1
,数列{bn}的前n项和为Tn,求证:2Tn-9bn-1+18>
64bn
(n+9)bn+1
(n>1).

(1)∵a1,a2,a7成等比数列,∴a22=a1•a7,即(a1+d)2=a1(a1+6d),又a1=1,d≠0,∴d=4.∴Sn=na1+n(n−1)2d=n+2n(n-1)=2n2-n.(2)证明:由(1)知bn=2Sn2n−1=2n(2n−1)2n−1=2n,∴{bn}是首项为2,公差...
答案解析:(1)由题意知,(a1+d)2=a1(a1+6d),由此能够推出Sn=na1+

n(n−1)
2
d=n+2n(n-1)=2n2-n.
(2)证明:由题设条件可以推出{bn}是首项为2,公差为2的等差数列,所以Tn=
n(2+2n)
2
=n2+n,由此入手能够得到2Tn−9bn−1+18>
64bn
(n+9)bn+1
(n>1)

考试点:数列的应用.
知识点:本题考查数列的性质和运算,具有一定的难度,解题时要认真审题,仔细解答,避免出错.