数列前n项和为sn,a1=1,an+sn是公差为2的等差数列,求an-2是等比数列,并求sn

问题描述:

数列前n项和为sn,a1=1,an+sn是公差为2的等差数列,求an-2是等比数列,并求sn

设Cn=an+Sn,则C1=a1+S1=2a1=2,则Cn=2n=an+Sn [1] ,则C=a+S=2n+2 [2], [2]式减[1]式,得 2a=an+2 ,则 2a-4=an-2,即 a-2=1/2(an-2),设bn=an-2,则bn=-(1/2)^(n-1)为等比数列,则 an=-(1/2)^(n-1)+2,则Sn=1/[2^(n-1)]+2n-2

证明:由题意:an+Sn=2n……(1),所以a(n+1)+S(n+1)=2(n+1)……(2)用(2)-(1)得:2a(n+1)-an=2,即2[a(n+1)-2]=an-2,即[a(n+1)-2]/[an-2]=1/2——为常数所以{an-2}是首项为-1公比是1/2的等比数列an-2=(-1)(1/2)^(n-1),...