设曲线y1=(ax-1)e^x在点A(x0,y1)处的切线为l1,曲线y2=(1-x)e^-x在点B(x0,y2)处的切线为l2.若存在0≤x0≤3/2,使得l1⊥l2,求a的取值范围.
问题描述:
设曲线y1=(ax-1)e^x在点A(x0,y1)处的切线为l1,曲线y2=(1-x)e^-x在点B(x0,y2)处的切线为l2.若存在0≤x0≤3/2,使得l1⊥l2,求a的取值范围.
答
y1'=(ax+a-1)e^x (切线斜率)
y2'=(x-2)e^-x (切线斜率)
垂直:y1'y2'=-1
即(ax0+a-1)(x0-2)=-1
.
------------------------------------
题目等价于二元一次方程在[0,3/2]有实数解(当然要先考虑a=0)