已知函数f(x)=ax^3+bx^2+cx在点x0处取得的极大值是-4,使其导数f'(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式(2)若过点P(-1,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
问题描述:
已知函数f(x)=ax^3+bx^2+cx在点x0处取得的极大值是-4,使其导数f'(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式(2)若过点P(-1,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
答
分析:(1)导数f′(x)>0的x的取值范围(1,3)得到1和3分别为函数的极小值和极大值点即f′(1)=0且f′(3)=0,且有f(1)=-4,三者联立即可求出a、b和c的值,得到f(x)的解析式;(2)设过A作的切线的切点坐标为...