已知a>b>0,求a+16/(b(a-b))的最小值.和a+16/(b(a-b))的最小值

问题描述:

已知a>b>0,求a+16/(b(a-b))的最小值.和a+16/(b(a-b))的最小值

a>b>0,则a>0,b>0且a-b>0.
故依基本不等式得
a+16/[b(a-b)]
≥a+16/[(b+a-b)/2]^2
=a+64/a^2
=(a/2)+(a/2)+(64/a^2)
≥3(a/2·a/2·64/a)^(1/3)
=6×2^(1/3).
∴a/2=64/a^2且b=a-b,
即a=4×2^(1/3),b=2×2^(1/3)时,
所求最小值为:6×2^(1/3)