已知a>0,b>0,lga,lgb的等差中项是0,则2/a+1/b的最小值为A.2B.2倍根号2C.3D.4
问题描述:
已知a>0,b>0,lga,lgb的等差中项是0,则2/a+1/b的最小值为
A.2
B.2倍根号2
C.3
D.4
答
B
lga+lgb=0
则ab=1
2/a+1/b》=2*√(2\ab)=2倍根号2
答
lga,lgb的等差中项是0,所以有:lga+lgb=0
可得:lgab=0 即:ab=1
2/a+1/b≥2√(2/ab) =2√2
故选B
答
lga,lgb的等差中项是0
lga+lgb=0
lgab=0
ab=1
2/a+1/b≥2√[(2/a)*(1/b)]=2√2
选B