以(y-c2)^2=4c1x为通解的微分方程

问题描述:

以(y-c2)^2=4c1x为通解的微分方程

∵(y-C2)^2=4C1x ==>2(y-C2)y'=4C1 (等式两端对x求导数)
==>y-C2=2xy' (代入通解化简)
==>y'=2xy''+2y' (等式两端对x求导数)
==>2xy''+y'=0
∴所求微分方程是2xy''+y'=0.