微分方程通解和特解,已知y1=x,y2=x^2,y3=e^x为方程y''+p(x)y'+q(x)y=f(x)的三个特解,求通解
问题描述:
微分方程通解和特解,已知y1=x,y2=x^2,y3=e^x为方程y''+p(x)y'+q(x)y=f(x)的三个特解,求通解
A.y=C1x+C2x^2+e^x
B.C1x^2+C2e^x+x
C.y=C1(x-x^2)+C2(x-e^x)+x
D.C1(x-x^2)+C2(x^2-e^x)
答案说选C,请问为什么啊?
答
线性非其次微分方程的解等于特解加上对应其次微分方程的解证明:微分方程可简化为L[y]=f(x)其中L[y]是方程左边线性算子,并设y?为方程特解,y!为L[y]=0的通解,有线性的性质得到L[y?+y!]=L[y?]+L[y!]有L[y?]==f(x)(特解)...