求以椭圆x^2/25+y^2/9=1的长轴端点作为焦点 且经过(4根号2,3)的双曲线方程

问题描述:

求以椭圆x^2/25+y^2/9=1的长轴端点作为焦点 且经过(4根号2,3)的双曲线方程

易知椭圆焦点在x轴上,长半轴为5
则双曲线的焦点也在x轴上,半焦距为5
令双曲线方程为x^2/a^2-y^2/b^2=1(a>0,b>0)
则a^2+b^2=5^2(I)

因双曲线经过点(4√2,3)
则(4√2)^2/a^2-3^2/b^2=1(II)

注意到a^2由(I)(II)解得a^2=16,b^2=9
所以所求双曲线方程为x^2/16-y^2/9=1

椭圆的长轴端点为F1(5,0),F2(-5,0),即双曲线的焦点在x轴上,那么
设双曲线的方程为x^2/a^2-y^2/b^2=1
其中a^2+b^2=c^2=5^2=25
且点(4√2,3)满足双曲线,那么将点代入双曲线方程可得:
32/a^2-9/(25-a^2)=1
令a^2=t (0则有32/t-9/(25-t)=1
化简得:32(25-t)-9t=(25-t)t
即:t^2-66t+800=0
即:(t-50)(t-16)=0
解得:t=50(舍去)或t=16
那么双曲线的方程为:x^2/16-y^2/9=1
满意请采纳,谢谢~

椭圆x^2/25+y^2/9=1的长轴长为2*5=10长轴端点为A(-5,0),B(5,0).∴ 双曲线的焦点为A(-5,0),B(5,0).设双曲线方程是x²/a²-y²/(25-a²)=1过(4√2,3)∴ 32/a²-9/(25-a²)=1即 32(25-a²)...