求函数y=(x-1)e^arctanx 的单调区间及极值

问题描述:

求函数y=(x-1)e^arctanx 的单调区间及极值

y'=e^arctanx+(x-1)e^(arctanx)/(1+x^2)=e^arctanx((x^2+x)/(x^2+1)),定义域是R
e^arctanx>0,(x^2+1)>0,所以y'=0,即:x^2+x,解得:x=0或-1
当-10
所以函数的单调增区间是:(-inf,-1]∪[0,inf);单调减区间是:[-1,0]
在x=-1的左侧临域内f'(x)>0,在x=-1的右侧临域内f'(x)0
所以函数在x=0处取得极小值:-e^arctan(0)=-e^(0)=-1