平行四边形ABCD中,对角线AC,BC交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,求EG=EF.
问题描述:
平行四边形ABCD中,对角线AC,BC交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,求EG=EF.
答
(1)∵四边形ABCD是平行四边形,
∴AD=BC,BD=2BO.
由已知BD=2AD,
∴BO=BC.
又E是OC中点,
∴BE⊥AC.
(2)由(1)BE⊥AC,又G是AB中点,
∴EG是Rt△ABE斜边上的中线.
∴EG=1/2AB.
又∵EF是△OCD的中位线,
∴EF=1/2CD.
又AB=CD,
∴EG=EF.
答
证明:∵E,F分别是OC,OD的中点,∴EF是⊿OCD的中位线,∴EF=½CD连接BE,∵ABCD是平行四边形∴AD=BC,AO=OD,AB=CD∵BD=2AD∴BC=BO 即⊿CBO是等腰三角形∵BE是⊿CBO的中线(等腰三角形中线,高,角分线3线合一)∴BE⊥A...