如图,平行四边形ABCD的对角线交于点O,点E、F、P分别是OB、OC、AD的中点,若AC=2AB.求证:EP=EF.
问题描述:
如图,平行四边形ABCD的对角线交于点O,点E、F、P分别是OB、OC、AD的中点,若AC=2AB.求证:EP=EF.
答
证明:因为四边形ABCD是平行四边形
所以:AO=CO,
由于:AC=2AB,
所以:AO=AB
由于:E是OB的中点
所以:AE垂直BD,
因为:AP=PD
所以:PE=(1/2)AD
因为:E,F分别是OB,OC的中点
所以:EF=(1/2)BC
而BC=AD
所以:EF=EP