已知直线l:y=x+k经过椭圆C:x2a2+y2a2-1=1,(a>1)的右焦点F2,且与椭圆C交于A、B两点,若以弦AB为直径的圆经过椭圆的左焦点F1,试求椭圆C的方程.

问题描述:

已知直线l:y=x+k经过椭圆C:

x2
a2
+
y2
a2-1
=1,(a>1)的右焦点F2,且与椭圆C交于A、B两点,若以弦AB为直径的圆经过椭圆的左焦点F1,试求椭圆C的方程.

设椭圆焦距为2c,则c=a2-(a2-1)=1…(1分)∴F2(1,0),代入y=x+k  得k=-1将y=x-1代入椭圆方程整理得:(2a2-1)x2-2a2x+2a2-a4=0…(4分)∵A、B点在直线l上,设A(x1,x1-1),B(x2,x2-1)∵AF1⊥BF...
答案解析:由题意知椭圆焦距c=1,F2(1,0),代入y=x+k,得k=-1,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用垂直关系即可求得a值,由此能求出椭圆方程.
考试点:椭圆的标准方程.
知识点:本题考查椭圆方程的求法,考要直线和椭圆位置关系的综合运用,解题时要认真审题,仔细解答,注意韦达定理、直线垂直等知识点的合理运用.