如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点,F为AB的中点.证明:(1)EE1∥平面FCC1.(2)平面D1AC⊥平面BB1C1C.
问题描述:
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点,F为AB的中点.证明:
(1)EE1∥平面FCC1.
(2)平面D1AC⊥平面BB1C1C.
答
证明:(1)证法一:取A1B1的中点为F1,连接FF1,C1F1,由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因为 平面FCC1即为平面C1CFF1,连接A1D,F1C,由于A1F1和D1C1和CD平行且相等.所以 四边形A1DCF1为平行四边形,因为...
答案解析:(1)法一:由EE1∥A1D⇒EE1∥F1C⇒EE1∥平面FCC1.即用利用线线平行来推线面平行.
法二:由平面ADD1A1∥平面FCC1⇒EE1∥平面FCC1.即用利用面面平行来推线面平行.
(2)先证AC⊥BC,又由AC⊥CC1⇒AC⊥平面BB1C1C⇒平面D1AC⊥平面BB1C1C.即利用线线垂直来推线面垂直再推2面面垂直.
考试点:平面与平面垂直的判定;直线与平面平行的判定.
知识点:本题考查平面和平面垂直的判定和性质和线面平行的推导.在证明线面平行时,其常用方法是在平面内找已知直线平行的直线.当然也可以用面面平行来推导线面平行.