已知M(1+cos2x,1),N(1,根号3*sin2x+a)(x∈R,a∈R,a是常数),且y=向量OM*向量ON,(O是坐标原点)若x∈[0,π/2]时,f(x)的最大值为4,求a的值,并说明此时f(x)的图像可由y=2sin(x+π/6)的图像经过怎样的转变而得到.

问题描述:

已知M(1+cos2x,1),N(1,根号3*sin2x+a)(x∈R,a∈R,a是常数),且y=向量OM*向量ON,(O是坐标原点)
若x∈[0,π/2]时,f(x)的最大值为4,求a的值,并说明此时f(x)的图像可由y=2sin(x+π/6)的图像经过怎样的转变而得到.

若x∈[0,π/2],则(2x+ π/6)∈[π/6,7π/6],∴- (1/2)≤sin(2x+ π/6)≤1,故 ymax =2+1+a=4,∴a=1