如图,海上有一小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°,航行12海里到达D点,在D点测得小岛A在北偏东30°,如果渔船继续向正东方向行驶,问是否有触礁的危险?
问题描述:
如图,海上有一小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°,航行12海里到达D点,在D点测得小岛A在北偏东30°,如果渔船继续向正东方向行驶,问是否有触礁的危险?
答
知识点:解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,
如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,
∵∠CAD=30°,∠CAB=60°,
∴∠BAD=60°-30°=30°,∠ABD=90°-60°=30°,
∴∠ABD=∠BAD,
∴BD=AD=12海里,
∵∠CAD=30°,∠ACD=90°,
∴CD=
AD=6海里,1 2
由勾股定理得:AC=
=6
122−62
≈10.392>8,
3
即渔船继续向正东方向行驶,没有触礁的危险.
答案解析:过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.
考试点:解直角三角形的应用-方向角问题.
知识点:解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.