如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险请自己给我解答,不要百度,

问题描述:

如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东航行,
行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险
请自己给我解答,不要百度,

过点P作PC⊥AB于C点,根据题意,得
AB=18× =6,∠PAB=90°-60°=30°,∠PBC=90°-45°=45°,∠PCB=90°,
∴PC=BC
在Rt△PAC中
tan30°= =即 ,解得PC= +3
∵ +3>6,∴海轮不改变方向继续前进无触礁危险.

暗礁的范围是一个半径为6海里的圆,只要海轮的航行轨迹与圆不与圆相交就不会有触礁的危险.现讨论边界问题:海轮的航迹与圆相切的条件.假设海轮与暗礁圆相切与C点,根据题意可知CP=6,AC=CPcot60=6√3,BC=CPcot45=6.故AB...