如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?
问题描述:
如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?
答
知识点:本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
过点P作PC⊥AB于C点,根据题意,得AB=18×2060=6(海里),∠PAB=90°-60°=30°,∠PBC=90°-45°=45°,∠PCB=90°,∴PC=BC在Rt△PAC中tan30°=PCAB+BC=PC6+PC即33=PC6+PC,解得PC=(33+3)海里,∵33+3>6,∴...
答案解析:过点P作PC⊥AB于C点,在Rt△PBD和Rt△PAC中,根据三角函数AC、BC就可以PC表示出来,在直角△PAC中,根据三角函数,就得到一个关于PC的方程,求得PC.进而判断如果海轮不改变方向继续前进有没有暗礁的危险.
考试点:解直角三角形的应用-方向角问题.
知识点:本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.