在三角形ABC中,∠B=60°,AB=24cm,BC=16cm.点P从点A出发,开始沿AB边向点B以4cm/s的速度运动,点Q从点C【紧急求助】 题目具体在这儿:在三角形ABC中,∠B=60°,AB=24cm,BC=16cm。点P从点A出发,开始沿AB边向点B以4cm/s的速度运动,点Q从点C开始沿CB边向点B以2cm/s的速度运动。它们同时出发,求:(1)几秒钟后,△PBQ的面积是△ABC面积的一半?(2)这时,P、Q两点之间的距离是多少?答得又快又正确,

问题描述:

在三角形ABC中,∠B=60°,AB=24cm,BC=16cm.点P从点A出发,开始沿AB边向点B以4cm/s的速度运动,点Q从点C
【紧急求助】 题目具体在这儿:在三角形ABC中,∠B=60°,AB=24cm,BC=16cm。点P从点A出发,开始沿AB边向点B以4cm/s的速度运动,点Q从点C开始沿CB边向点B以2cm/s的速度运动。它们同时出发,
求:(1)几秒钟后,△PBQ的面积是△ABC面积的一半?
(2)这时,P、Q两点之间的距离是多少?
答得又快又正确,

先求abc的面积=0.5*24*16*.5=96;
设 过了x 秒, 0.5*96=0.5*(24-x)*(16-x)*.5
解出x

过点P做PE⊥BC
设X秒后,△PBQ的面积是△ABC面积的一半
∵点P从点A出发,开始沿AB边向点B以4cm/s的速度运动,点Q从点C开始沿CB边向点B以2cm/s的速度运动
∴PB=24-4X
BQ=16-2X
在三角形PBE中,根据60度角的正弦值,可得
PE=(24-4X )*sin60=12√3-2√3X
三角形PBQ的面积=1/2(16-2X)*(12√3-2√3X)
三角形ABC的高=AB*sin60=12√3
∵△PBQ的面积是△ABC面积的一半
∴(16-2X)*(12√3-2√3X)=2*48√3
整理得
X^2-14X-24=0
解方程得
X1=2 X2=12(12秒的时候大于边长,舍去)
所以2秒后,△PBQ的面积是△ABC面积的一半
2解
2秒后BP=16
BQ=12
PQ^2=BP^2+BQ^2-2*BP*BQ*cos60
=208
PQ=4√13

1)令X秒钟后,△PBQ的面积是△ABC面积的一半S△ABC/S△BPQ=1/2*BC*AB*sin60/(1/2*BQ*BP*sin60)则BC*AB/BQ*BP=2BP=AB-4X=24-4X,BQ=BC-2X=16-2X2(24-4X)(16-2X)=24*16X=12(舍),X=22秒钟后2)2秒钟后BP=16,BQ=12PQ...