已知数列{an},an∈N*,前n项和Sn=18(an+2)2.(1)求证:{an}是等差数列;(2)若bn=12an-30,求数列{bn}的前n项和的最小值.

问题描述:

已知数列{an},an∈N*,前n项和Sn=

1
8
(an+2)2
(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30,求数列{bn}的前n项和的最小值.

(1)证明:∵an+1=Sn+1-Sn=18(an+1+2)2-18(an+2)2,∴8an+1=(an+1+2)2-(an+2)2,∴(an+1-2)2-(an+2)2=0,(an+1+an)(an+1-an-4)=0.∵an∈N*,∴an+1+an≠0,∴an+1-an-4=0.即an+1-an=4,∴数列{an...
答案解析:本题考查数列的通项与其前n项和的关系、等差数列的证明、数列的求和等综合性问题.
(1)根据an+1=Sn+1-Sn及前n项和Sn=

1
8
(an+2)2,可以得到(an+1+an)(an+1-an-4)=0,从而问题得证.
(2)由(1)可得数列{an}的通项公式,进而由bn=
1
2
an-30得到数列{bn}的通项公式,然后可求数列{bn}的前n项和,再由此求其最小值,最小值有两种求法,其一是转化为二次函数的最值,其二是找出正负转折的项.
考试点:等差关系的确定;数列的求和.

知识点:本题的(2)中求sn的最值问题是数列中较为常见的一种类型,主要方法有两种:
法一只适用于等差数列的和的最值问题,对于其他数列,因为不能转化为关于n的二次函数,所以无法使用,有一定的局限性;
法二是常规方法,使用范围广,其特点是找到递增或递减的数列中正项和负项的转折“点”而得到答案.