函数y=cos(π4-2x)的单调递增区间是( ) A.[kπ+π8,kπ+58π] B.[kπ-38π,kπ+π8] C.[2kπ+π8,2kπ+58π] D.[2kπ-38π,2kπ+π8](以上k∈Z)
问题描述:
函数y=cos(
-2x)的单调递增区间是( )π 4
A. [kπ+
,kπ+π 8
π]5 8
B. [kπ-
π,kπ+3 8
]π 8
C. [2kπ+
,2kπ+π 8
π]5 8
D. [2kπ-
π,2kπ+3 8
](以上k∈Z) π 8
答
函数y=cos(
-2x)=cos(2x-π 4
),根据余弦函数的增区间是[2kπ-π,2kπ],k∈z,π 4
得:2kπ-π≤2x-
≤2kπ,π 4
解得 kπ-
≤x≤kπ+3π 8
,π 8
故选 B.