线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

问题描述:

线性空间的证明
检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji = -aij
所以反对称矩阵由其上三角部分唯一确定,
故其维数为:(n-1)+(n-2)+...+1 = n(n-1)/2
令Eij 为aij=1,aji=-1,其余元素为0的矩阵,1