已知函数f(x)=lg[(a2-1)x2+(a+1)x+1](1)若f(x)的定义域为R,求实数a的取值范围;(2)若f(x)的值域为R,求实数a的取值范围.
问题描述:
已知函数f(x)=lg[(a2-1)x2+(a+1)x+1]
(1)若f(x)的定义域为R,求实数a的取值范围;
(2)若f(x)的值域为R,求实数a的取值范围.
答
(1)f(x)的定义域为R∴(a2-1)x2+(a+1)x+1>0恒成立当a2-1=0时,得a=-1,a=1不成立当a2-1≠0时,a2−1>0△=(a+1)2−4(a2−1)<0解得a>53或a<-1综上得a>53或a≤-1(2)当a2-1=0时,得a=1,a=-1不成立当a2-...
答案解析:(1)因为f(x)的定义域为R,所以对数的真数一定大于0恒成立,讨论二次项系数为0不成立,系数不为0时,得到系数大于0且根的判别式小于0求出a的范围即可;
(2)因为函数值域为R,讨论二次项系数为0时,不成立,系数不为0时,让系数大于0且根的判别式大于等于0求出a的范围即可.
考试点:对数函数的定义域;函数恒成立问题.
知识点:考查学生理解对数函数定义域和值域的能力,以及理解函数恒成立条件的能力.