已知tan(π/4+a)=1/2求cos2a/sin2a+cos²a

问题描述:

已知tan(π/4+a)=1/2
求cos2a/sin2a+cos²a

已知,tan(π/4+a) = [1+tan(a)]/[1-tan(a)] = 1/2 ,可得:tan(a) = -1/3 ;
tan(2a) = 2tan(a)/[1-tan^2(a)] = -3/4 ,
sec^2(a) = 1+tan^2(a) = 10/9 ,
cos^2(a) = 1/sec^2(a) = 9/10 ;
所以,cos(2a)/sin(2a)+cos^2(a) = 1/tan(2a)+cos^2(a) = -4/3+9/10 = -13/30 。

tanπ/4=1所以(1+tana)/(1-tana)=1/22+2tana=1-tanatana=-1/3sina/cosa=tana=-1/3cosa=-3sina则cos²a=9sin²a因为sin²a+cos²a=1所以sin²a=1/10,cos²a=9/10cos2a=cos²a-sin²a...