已知cos2a=(1/4),求cos^4a+sin^4+sin^2acos^2a的值
问题描述:
已知cos2a=(1/4),求cos^4a+sin^4+sin^2acos^2a的值
答
cos(2a)=1/4
[sin(2a)]^2=1-[cos(2a)]^2=1-1/16=15/16
(cosa)^4+(sina)^4+(sina)^2(cosa)^2
=[(cosa)^2+(sina)^2]^2-(sina)^2(cosa)^2
=1-sin(2a)^2/4
=1-(15/16)/4
=1-15/64
=49/64