选修4-4.坐标系与参数方程已知直线L:Psin(A-45度)=4和圆C:P=2k乘cos(A+45度)(k不等于0),若直线L上的一点到圆C上的点的最小距离等于2.(1)求圆心C的直角坐标; (2)求实数K的值.
问题描述:
选修4-4.坐标系与参数方程
已知直线L:Psin(A-45度)=4和圆C:P=2k乘cos(A+45度)(k不等于0),若直线L上的一点到圆C上的点的最小距离等于2.(1)求圆心C的直角坐标; (2)求实数K的值.
答
由表达式得: P(sinAcos45度-cosAsin45度)=4 又psinA=Y pcosA=X(转换) 所以: Y-X=4(2)^(1/2)即(4根号2) 所以 画出直线过点(0,4根号2)(-4根号2,0) 化简圆c: 得P/(-2sinA)=K(K不等于0),所以有圆方程可知:...