1.f(x)=√ax^2+bx ,存在正数b,使得的定义域和值域相同.

问题描述:

1.f(x)=√ax^2+bx ,存在正数b,使得的定义域和值域相同.
(1)求非零实数a的值
(2)若函数g(x)=f(x)-b/x有零点,求b的最小值
2.已知二次函数f(x)=ax^2+bx+c和一次函数g(x)=-bx,其中且满足a,b,c∈R,a>b>c,f(1)=0
(1)证明函数f(x)与g(x)的图象交于不同的两点A,B
(2)若函数F(x)=f(x)-g(x)在[2,3]上的最小值为9,最大值为21,求a,b
3.化简2√1+sin8 + √2+2cos8
4.已知sinθ1-sinθ2=-(2/3) cosθ1-cosθ2=2/3 其中θ1,θ2为锐角,则 tan(θ1-θ2)=?
5.设△ABC中,tanA,tanB,tanC为连续自然数,最长边c=10,则a=?b=?
根号下[a(x^2)+bx]
2√(1+sin8) + √(2+2cos8)
就是8,不是8度

第一题1.f(x)=(ax^2+bx)^0.5 ,存在正数b,使得的定义域和值域相同.(1)求非零实数a的值 (2)若函数g(x)=f(x)-b/x有零点,求b的最小值 a>0则值域[0,无穷大)定义域不是[0,无穷大)所以a〈0值域[0,(-b^2/4a)^0.5]定义域...