f(x)=xe^x+ax^2+bx 在x=0和x=-1时都取得极值1.求a和b的值2.若存在实数x属于〔1,2〕,使得不等式f(x)《二分之一x^2+(t-1)x成立,求实数t的取值范围;一楼解错了 二楼第一个问对了下面的不详细 分给谁呢?

问题描述:

f(x)=xe^x+ax^2+bx 在x=0和x=-1时都取得极值
1.求a和b的值
2.若存在实数x属于〔1,2〕,使得不等式f(x)《二分之一x^2+(t-1)x成立,求实数t的取值范围;
一楼解错了 二楼第一个问对了下面的不详细 分给谁呢?

1. f'(x)=(x+1)e^x+2ax+b
f'(0)=b+1=0
f'(-1)=-2a+b=0
∴a=1/2, b=-1
2.f(x)=xe^x+(1/2)x^2-x
若f(x)即xe^x-xxe^x∵x属于〔1,2〕,x>0
∴e^x∴x∴当lnt>1时,必存在x属于(1,2),使不等式成立
即t>e

(1)、由f'(x)=xe^x+e^x+2ax+b=0的两根为0,-1;可得:a=-1/2,b=-1
(2)、f(x)=xe^x-1/2x^2-x
f(x)所以g(x)在(1,2)上的值域为(e-1,e^2-2).从而只需t>=min(g(x))=e-1即可。所以t>=e-1.

1.f'(x)=(x+1)e^x+2ax+b由已知f'(0)=1,f'(-1)=0代入上式得1+b=0,b-2a=0,即a=-1/2,b=-12.f(x)≤1/2x^2+(t-1)x,1≤x≤2即xe^x-1/2x^2-x ≤1/2x^2+(t-1)x即xe^x-x^2≤tx又x>0,所以e^x-x≤t令g(x)=e^x-x,则g'(x)=e^x-1当...

解(1)对f(x)求导得:f‘(x)=e^x+xe^x+2ax+b
有两个极值点得:f’(0)=0;f'(-1)=0 => a=-1/2 ,b=-1.
(2)把f(x)的表达式带入不等式,然后移向使不等式的一边为0,令另一边 为g(x)=xe^x+ax^2+bx-1/2 x^2+(t-1)x
把问题就转化为使g(x)这样就把问题化简了
再解解看哈,如果还是不行,我在帮你解哈,加油!!!