F1,F2是椭圆的两个焦点,以F2为圆心且过中心的圆与椭圆的一个交点为M,F1M与圆F2相切,求椭圆的离心率.

问题描述:

F1,F2是椭圆的两个焦点,以F2为圆心且过中心的圆与椭圆的一个交点为M,F1M与圆F2相切,求椭圆的离心率.

设F1M=s,F2M=r.r是圆的半径

r=c(圆过椭圆的中心,半径=半焦距)
s+r=2a(椭圆第一定义)
r^2+s^2=(2c)^2(相切,则F1M和F2M垂直,用勾股定理)
把第一式和第二式代入第三式,得到
4a^2-4ac=2c^2
上式两边同时除以2a^2
就得到e^2+2e-2=0
解这个方程,取在0到1之间的一个根
e=sqrt(3)-1
上面的sqrt是开平方的意思,答案就是(根号3)减1