已知椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为(  )A. 23B. 33C. 53D. 73

问题描述:

已知椭圆C:

x2
a2
+
y2
b2
=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为(  )
A.
2
3

B.
3
3

C.
5
3

D.
7
3

连接OA,PF1,则OA⊥PQ,又PF1⊥PQ,可得OA∥PF1因为A为线段PQ的靠近P的三等分点,所以A为线段PF2的中点,于是PF1=2b.结合椭圆的定义有PF2=2a-2b,在直角三角形PF1F2中,利用勾股定理得(2a-2b)2+(2b)2=(2c)2...
答案解析:连接OA,PF1,则OA⊥PQ,PF1⊥PQ,因为A为线段PQ的靠近P的三等分点,所以A为线段PA的中点,于是PF1=2b.结合椭圆的定义有PF2=2a-2b,由此能求出椭圆的离心率.
考试点:直线与圆锥曲线的关系.
知识点:离心率问题是解析几何的重点内容,各省考查频率相当高,往往融椭圆、双曲线的定义与平面几何的性质与一体,能够较好的考查学生的思维层次,备受命题专家的青睐.此题结合圆、椭圆、切线等知识,含金量高.