已知F1、F2分别是椭圆x24+y23=1的左、右焦点,A是椭圆上一动点,圆C与F1A的延长线、F1F2的延长线以及线段AF2相切,若M(t,0)为一个切点,则( )A. t=2B. t>2C. t<2D. t与2的大小关系不确定
问题描述:
已知F1、F2分别是椭圆
+x2 4
=1的左、右焦点,A是椭圆上一动点,圆C与F1A的延长线、F1F2的延长线以及线段AF2相切,若M(t,0)为一个切点,则( )y2 3
A. t=2
B. t>2
C. t<2
D. t与2的大小关系不确定
答
由题意知,圆C是△AF1F2的旁切圆,点M是圆C与x轴的切点,设圆C与直线F1A的延长线、AF2分别相切于点P,Q,则由切线的性质可知:AP=AQ,F2Q=F2M,F1P=F1M,∴MF2=QF2=(AF1+AF2)-(AF1+AQ)=2a-AF1-AP=2a-F1P=2a-F1M...
答案解析:由题意知,圆C是△AF1F2的旁切圆,点M是圆C与x轴的切点,设圆C与直线F1A的延长线、AF2分别相切于点P,Q,
则由切线的性质可知:AP=AQ,F2Q=F2M,F1P=F1M,由此能求出t的值.
考试点:圆与圆锥曲线的综合.
知识点:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.