若等差数列{an}的前n项和为Sn,且满足SnS2n为常数,则称该数列为S数列.(Ⅰ)判断an=4n-2是否为S数列?并说明理由;(Ⅱ)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项公式.

问题描述:

若等差数列{an}的前n项和为Sn,且满足

Sn
S2n
为常数,则称该数列为S数列.
(Ⅰ)判断an=4n-2是否为S数列?并说明理由;
(Ⅱ)若首项为a1的等差数列{an}(an不为常数)为S数列,试求出其通项公式.

(Ⅰ)由an=4n-2,得a1=2,d=4,

Sn
S2n
2n+
1
2
n(n−1)4
2n•2+
1
2
•2n(2n−1)4
1
4

所以它为S数列;
(Ⅱ)设等差数列{an},公差为d,则
Sn
S2n
a1n+
1
2
n(n−1)d
2a1n+
1
2
•2n(2n−1)d
=k
(常数),
∴2a1n+n2d-nd=4a1kn+4n2dk-2nkd,化简得d(4k-1)n+(2k-1)(2a1-d)=0①,
由于①对任意正整数n均成立,
d(4k−1)=0
(2k−1)(2a1−d)=0
解得:
d=2a1≠0
k=
1
4
.

故存在符合条件的等差数列,其通项公式为:an=(2n-1)a1,其中a1≠0.
答案解析:(Ⅰ)由等差数列的通项公式找出等差数列的首项和公差,然后利用等差数列的前n项和的公式表示出Sn和S2n,求出
Sn
S2n
等于
1
4
为常数,所以得到该数列为S数列;
(Ⅱ)设此数列的公差为d,根据首项和公差,利用等差数列的前n项和的公式表示出Sn和S2n,因为此数列为S数列,得到
Sn
S2n
等于常数,设比值等于k,去分母化简后得到关于n的一个多项式等于0,令其系数和常数项等于0即可求出k和d值,根据首项和公差d写出该数列的通项公式即可.
考试点:等差数列的前n项和;等差数列的性质.
知识点:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,掌握题中的新定义并会利用新定义化简求值,是一道综合题.