设Sn为数列{an}的前n项和,若S2n/Sn(n属于正整数)是非零常数,则该数列为“和等比数列”.………………若数列{Cn}是首项为c1,公差为d(d不等于0)的等差数列,且数列{Cn}起“和等比数列”,试探究d与c1之间的等量关系.

问题描述:

设Sn为数列{an}的前n项和,若S2n/Sn(n属于正整数)是非零常数,则该数列为“和等比数列”.………………若数列{Cn}是首项为c1,公差为d(d不等于0)的等差数列,且数列{Cn}起“和等比数列”,试探究d与c1之间的等量关系.
为什么4m-2=4(2m-1)?

其实这是一个恒成立的问题
首先设k为那个比值
k=S2n/Sn=[2nc1+n(2n-1)d]/[nc1+n(n-1)d/2]
再对这个式子进行化简和合并
knc1+n(n-1)dk/2=2nc1+n(2n-1)d
kc1+(n-1)dk/2=2c1+(2n-1)d
将括号打开 并进行合并
kc1-dk/2-2c1+d=nd(2-k/2)
左边分解因式
(c1-d/2)(k-2)=nd(2-k/2)
因为这个式子只有n是变量 而这个式子恒成立
所以 必然是0=0的情况
然后可以讨论
右边d不等于0,所以2-k/2=0,k=4
左边k-2≠0 所以c1-d/2=0 所以d=2c1