若等差数列{an}的前n项和为Sn,且满足Sn/S2n为常数,则称该数列为S数列 若首项为a1的各项为正数的等差数列{an}是S数列,设n+h=2008,(n,h为正数) 求1/Sn+1/Sh的最小值 Sn、Sh分别是数列的前n项和和前h项
问题描述:
若等差数列{an}的前n项和为Sn,且满足Sn/S2n为常数,则称该数列为S数列 若首项为a1的各项为正数的等差数列{an}是S数列,设n+h=2008,(n,h为正数) 求1/Sn+1/Sh的最小值 Sn、Sh分别是数列的前n项和和前h项和,S2n为前2n项和
答
应该是2/1004^2*a1 因为Sn/S2n=k,(a1与d不同时为零) 于是有:当a1≠0,d=0时,sn=na1,s2n=2na1,则此时k=1/2 当a1与d都不为0时,sn=na1+dn(n-1)/2,s2n=2na1+2dn(2n-1)/2,由Sn/S2n=k可得[(d/2)-2kd]n+(a1-d/2+kd-2ka1)=0恒成立,于是(d/2)-2kd=0,a1-d/2+kd-2ka1=0 解得k=1/4,2a1=d 因为{an}是S数列,所以当d=0时,1/Sn+1/Sh=[1/n+1/(2008-n)]*(1/a1)=(1/a1)*[2008/(1004^2-(n-1004)^2]≥1/(502a1),当且仅当n=1004时取等号 当d≠0时,d=2a1,sn=na1+dn(n-1)/2=na1+a1n(n-1)=n^2a1,sh=h^2,由此可得1/Sn+1/Sh=(1/n^2+1/h^2)*1/a1≥2/nha1=2/n(2008-n)a1≤2/1004^2*a1,当且仅当n=1004时取等号 综上,1/Sn+1/Sh最小值为2/1004^2*a1