a1=1,a2=2,a(n+2)=(1+(cosnπ\2)^2)an+(sinnπ\2)^21,求通项,2,bn=a(2n-1)\a2n,sn=b1+b2+……+bn,求sn

问题描述:

a1=1,a2=2,a(n+2)=(1+(cosnπ\2)^2)an+(sinnπ\2)^2
1,求通项,2,bn=a(2n-1)\a2n,sn=b1+b2+……+bn,求sn

1、当n为奇数时,a(n+2)=an+1,a1=1,a3=2,a5=a3+1=3,an=(n+1)/2
则对于任意正整数有a(2n-1)=n
当n为偶数时,a(n+2)=2an,a2=2,a4=4,a6=8,an=2*2^(n/2-1)
则对于任意正整数有a(2n)=2*2^(n-1)=2^n
2、bn=a(2n-1)\a2n=n/[2^n]
sn=1/2+2/4+3/8+ n/[2^n]
0.5sn=(1/2+2/4+3/8+ n/[2^n])*0.5=1/4+2/8+3/16+ n/[2^(n-1)]
sn-0.5sn=1/2-1/4+2/4-2/8+3/8-3/16+ n/[2^n]-n/[2^(n-1)]
1.5sn=1/2+1/4+1/8+1/(2^n)=