已知双曲线x^2/a^2-y^2=1的一个焦点与抛物线x=1/8y^2的焦点重合,则此双曲线的离心率为多少
问题描述:
已知双曲线x^2/a^2-y^2=1的一个焦点与抛物线x=1/8y^2的焦点重合,则此双曲线的离心率为多少
答
经计算是2/3根号3
答
抛物线方程是8x=y^2,那么抛物线焦点是(2,0).
由于此焦点也是双曲线焦点,那么c=2,考虑c^2=a^2+b^2
那么a^2=c^2-b^2=4-1=3,a=根号3
e=c/a=2/根号3