求∫ ln(1+X^2)dx ,∫范围是1-e

问题描述:

求∫ ln(1+X^2)dx ,∫范围是1-e

求定积分[-e,1]∫ ln(1+x²)dx
为简化书写过程,先求不定积分:
∫ ln(1+x²)dx =xln(1+x²)-∫[2x²/(1+x²)]dx=xln(1+x²)-2∫[1-1/(1+x²)]dx=xln(1+x²)-2[x-arctanx]+C
故[-e,1]∫ ln(1+x²)dx =[xln(1+x²)-2(x-arctanx)+C]︱[-e,1]
=ln2-2(1-π/4)-[-eln(1+e²)-2(-e-arctan(-e)]
=ln2-2-π/2+eln(1+e²)-2e+2aarctane
=eln(1+e²)+ln2-2(e+1)-π/2+2aarctane

∫ ln(1+X^2)dx
=xln(1+x^2)-∫xd ln(1+X^2)
=xln(1+x^2)-∫x*2xdx/(1+x^2)
=xln(1+x^2)-∫[ 2(x^2+1)-2]dx/(1+x^2)
=xln(1+x^2)-∫ 2dx+2∫ dx/(1+x^2)
=xln(1+x^2)-2x+2arctanx
所以定积分的值=eln(1+e^2)-2e+2arctane-ln2+2-2arctan1.

先算不定积分,分部积分=x ln (1+x^2)-∫ x*2x/(1+x^2)dx=x ln(1+x^2)-2∫ [1-1/(1+x^2)]dx=xln(1+x^2)-2x+2 arctan x代入x=1,得到 ln2-2+2*pi/4x=e,e*ln(1+e^2)-2*e+2*arctan e后者减前者=[e*ln(1+e^2)-2*e+2*arctan...