由方程arctan y/x=ln(根号x^2+y^2)所确定的y是x的函数,求dy/dx

问题描述:

由方程arctan y/x=ln(根号x^2+y^2)所确定的y是x的函数,求dy/dx
最好能有具体步骤.

两边对【x】求导,注意,y是x的函数,利用复合函数求导
1/[1+(y/x)^2]×(y/x)'=1/2×1/(x^2+y^2)×(x^2+y^2)',也就是:
x^2/(x^2+y^2)×(xy'-y)/x^2=1/2×1/(x^2+y^2)×(2x+2yy')
化简得:y'=(x+y)/(x-y)