已知数列{an}的通项公式是an=2n-49 (n∈N),那么数列{an}的前n项和Sn 达到最小值时的n的值是(  ) A.23 B.24 C.25 D.26

问题描述:

已知数列{an}的通项公式是an=2n-49 (n∈N),那么数列{an}的前n项和Sn 达到最小值时的n的值是(  )
A. 23
B. 24
C. 25
D. 26

由an=2n-49≥0,得n≥24.5,
∴a24=2×24-49=-1<0,
a25=2×25-49=1>0,
∴数列{an}的前n项和Sn 达到最小值时的n=24.
故选B.