acosA=bcosB,在△ABC中!判断其形状!

问题描述:

acosA=bcosB,在△ABC中!判断其形状!

∵acosA=bcosB
∴a/b=cosB/cosA
∵a/sinA=b/sinB=2r
∴sinA/sinB=cosB/cosA
∴sinAcosA-sinBcosB=0
∴(1/2)×(sin2A-sin2B)=0
∴sin2A=sin2B
∴2A=2B或2A=π-2B
∴A=B 或C=90°
∴三角形是等腰三角形或者是直角三角形