数列1+12,2+14,3+18,…,n+12n,…的前n项和是(  ) A.sn=n(n−1)2-12n B.sn=n(n−1)2+1-12n C.sn=n(n+1)2+1-12n D.sn=n(n−1)2+12n

问题描述:

数列1+

1
2
,2+
1
4
,3+
1
8
,…,n+
1
2n
,…的前n项和是(  )
A. sn=
n(n−1)
2
-
1
2n

B. sn=
n(n−1)
2
+1-
1
2n

C. sn=
n(n+1)
2
+1-
1
2n

D. sn=
n(n−1)
2
+
1
2n

数列1+

1
2
,2+
1
4
,3+
1
8
,…,n+
1
2n
,…的前n项和:
Sn=(1+2+3+…+n)+(
1
2
+
1
4
+
1
8
+…+
1
2n

=
n(n+1)
2
+
1
2
(1−
1
2n
)
1−
1
2

=
n(n+1)
2
+1-
1
2n

故选:C.