已知数列{an}的前n项和为Sn,Sn=1/3(an−1)(n∈N*). (Ⅰ)求a1,a2; (Ⅱ)求证数列{an}是等比数列.
问题描述:
已知数列{an}的前n项和为Sn,Sn=
(an−1)(n∈N*).1 3
(Ⅰ)求a1,a2;
(Ⅱ)求证数列{an}是等比数列.
答
(Ⅰ)由S1=13(a1−1),得a1=13(a1−1)∴a1=−12又S2=13(a2−1),即a1+a2=13(a2−1),得a2=14.(Ⅱ)当n>1时,an=Sn−Sn−1=13(an−1)−13(a n−1−1),得anan−1=−12,所以{an}是首项−12,公比为...