已知函数f(x)=ax+1/x+2,a∈Z,是否存在整数a,使函数f(x)在x∈[-1,+∞)上递减,并且f(x)不恒为负?若存在,找出一个满足条件的a,若不存在,请说明理由.

问题描述:

已知函数f(x)=

ax+1
x+2
,a∈Z,是否存在整数a,使函数f(x)在x∈[-1,+∞)上递减,并且f(x)不恒为负?若存在,找出一个满足条件的a,若不存在,请说明理由.

∵f(x)=ax+1x+2=a(x+2)+1−2ax+2=a+1−2ax+2,∴要使函数f(x)在x∈[-1,+∞)上递减,则1-2a>0,此时a<12,要使f(x)不恒为负,即f(x)=ax+1x+2≥0在∈[-1,+∞)有解,当a=0时,f(x)=ax+1x+2=1x+2,此时...