如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.(1)判断直线CD是否是⊙O的切线,并说明理由;(2)若CD=33,求BC的长.

问题描述:

如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30度.

(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD=3

3
,求BC的长.

(1)CD是⊙O的切线证明:连接OD∵∠ADE=60°,∠C=30°∴∠A=30°∵OA=OD∴∠ODA=∠A=30°∴∠ODE=∠ODA+∠ADE=30°+60°=90°∴OD⊥CD∴CD是⊙O的切线;(2)在Rt△ODC中,∠ODC=90°,∠C=30°,CD=33∵tanC=ODCD...
答案解析:(1)根据切线的判定定理,连接OD,只需证明OD⊥CD,根据三角形的外角的性质得∠A=30°,再根据等边对等角得∠ADO=∠A,从而证明结论;
(2)在30°的直角三角形OCD中,求得OD,OC的长,则BC=OC-OB.
考试点:切线的判定;解直角三角形.


知识点:此题主要考查切线的判定及解直角三角形的综合运用.